A 76	Nome:		nº:	
WALTER BELIAN FUNDAÇÃO ANTONIO E HELENA ZERRENNER INSTITUIÇÃO NACIONAL DE BENEFICÊNCIA	Bimestre: 1º	Ano/série: 2ª série	Ensino: Médio	
	Componente Curricular: Química			
	Professor: Ricardo Honda			
	Data://			

Lista de exercícios de Química nº 4

Reagente em excesso e reagente limitante

1. O processo a seguir é um dos que ocorrem nos catalisadores dos carros:

CO (tóxico) + ½ O₂ → CO₂ (não-tóxico)

Determine o número de moléculas de CO₂ formadas na reação entre 2 mol de CO e 2 mol de O₂.

- 2. No processo $SO_2 + \frac{1}{2}O_2 \rightarrow SO_3$ determine o excesso de reagente na reação entre 4 mol de SO_2 e 4 mol de O_2 .
- 3. Na combustão incompleta da grafita, ocorre:

 $C + \frac{1}{2} O_2 \rightarrow CO$

Determine o excesso de reagente na reação entre 32 g de carbono e 32 g de oxigênio.

(Dadas as massas molares em g/mol: C = 12; $O_2 = 32$).

4. Na neutralização entre hidróxido de sódio e ácido clorídrico pode ocorrer o processo:

NaOH + HCl → NaCl + H₂O

No caso de uma mistura de 5 mol de cada reagente:

- a) haverá excesso de reagente?
- b) determine a massa de NaCl produzida.

(Dada a massa molar do NaCl = 58,5 g/mol).

5. A amônia, largamente utilizada na indústria de adubos, pode ser produzida pelo método Haber:

 $N_2 + 3 \ H_2 \rightarrow 2 \ NH_3$

Caso sejam utilizados 6 . 10⁴ mol de cada reagente, determine:

- a) o reagente limitante.
- b) a quantidade, em mol, de amônia obtida.
- 6. A reação de fotossíntese pode ser assim equacionada:

 $6 \text{ CO}_2 + 6 \text{ H}_2\text{O} \rightarrow \text{C}_6\text{H}_{12}\text{O}_6 + 6 \text{ O}_2$

Determine a massa de glicose obtida a partir de 13,2 g de CO_2 e 10,0 g de água.

(Dadas as massas molares em g/mol: $CO_2 = 44$; $H_2O = 18$; $C_6H_{12}O_6 = 180$).

7. (VUNESP) - Considere a reação química representada pela equação:

2 Fe₂S₃ + 6 H₂O + 3 O₂ \rightarrow 4 Fe(OH)₃ + 6 S

Calcule a quantidade (em mols) de $Fe(OH)_3$ que pode ser produzida a partir de uma mistura que contenha 1 mol de Fe_2S_3 , 2 mol de H_2O e 3 mol de O_2 .

8. (VUNESP) - A reação para a produção do pesticida organoclorado DDT é:

 $CCI_3CHO + 2 C_6H_5CI \rightarrow (CIC_6H_4)_2CHCCI_3 + H_2O$

(Massas atômicas: H = 1; O = 16; C = 12; Cl = 35,5).

- a) Calcule a massa de DDT que se forma quando 100 g de CCI₃CHO reagem com 100 g de C₆H₅Cl.
- b) Indicar o reagente que está em excesso justificando a resposta. O que deve ocorrer, se a massa de CCI₃CHO for duplicada?
- 9. (UFMT) Juntam-se 11,70 g de NaCl e 27,20 g de $AgNO_3$, ambos em solução aquosa. (Dadas as massas atômicas: N = 14; O = 16; Na = 23; Cl = 35,5; Ag = 108).

Pede-se:

- a) o reagente em excesso.
- b) a massa do reagente em excesso.
- c) a massa do precipitado (AgCI) obtido.
- **10. (UFPR) –** Em uma experiência na qual o metano (CH₄) queima em oxigênio, gerando dióxido de carbono e água, foram misturados 0,25 mol de metano com 1,25 mol de oxigênio. (Dadas as massas atômicas: C = 12; H = 1; O = 16).
- a) Todo o metano foi queimado? Justifique.
- b) Quantos gramas de CO₂ foram produzidos? Justifique.
- **11. (MAUÁ)** A partir de uma mistura de 3,0 g de H₂ e 71,0 g de Cl₂, calcule a massa de HCl que pode ser obtida. (Dadas as massas atômicas: H = 1; Cl = 35,5).
- **12.** (MACKENZIE) Adicionando-se 4,5 g de H_2 a 31,5 g de N_2 originaram-se 25,5 g de NH_3 , sobrando ainda N_2 que não reagiu. Para se obterem 85 g de NH_3 , calcule a massa de H_2 e de NH_3 necessária. (Dadas as massas molares em g/mol: $N_2 = 28$; $NH_3 = 17$).

Gabarito: 1. 1,2 . 10²⁴; **2.** 2 mol de O₂ em excesso; **3.** 8 g de C em excesso; **4.** a) Não. b) 292,5 g; **5.** a) H₂. b) 4 . 104 mol; **6.** 9 g; **7.** 1,33 mol; **8.** a) 157,5 g. b) CCI₃CHO está em excesso. **9.** a) NaCl. b) 2,34 g de NaCl em excesso. c) 22,8 g de AgCl obtido; **10.** a) Sim. b) 11 g de CO₂. **11.** 73,0 g; **12.** 15 g de H₂ e 70 g de N₂.