Bimestre: 1º Ano/série: 2ª série Ensino: Médio										
Millestie. 1 Allo/selie. 2 selie Elisilio. Ivieulo										
Componente Curricular: Química	Componente Curricular: Química									
WALTER BELIAN Professor: Ricardo Honda										
Data:/										

Lista de exercícios de Química nº 7

Densidade dos gases

1. A	massa	molecular	aparente	do a	r pode	ser	calculada	pela	média	ponderada	a das	massas	s mole	culares	dos
gase	s comp	onentes. A	Admitindo (que 8	0% das	mc	léculas do	ar se	ejam de	N ₂ e que	20%	sejam o	$de O_2$,	determi	ine a
mass	sa mole	cular apare	ente da mi	stura.	(Dadas	s as	massas at	ômic	as: N =	14 u; O = 1	16 u).				

- 2. Sabe-se que dirigíveis e balões de propaganda são preenchidos com gás hélio. Costuma-se dizer que o hélio é mais "leve" que o ar. Com o resultado do exercício 1 e sabendo que a massa atômica do hélio vale 4 u, determine, nas mesmas condições de pressão e temperatura:
- a) a densidade relativa do gás hélio em relação ao ar.
- b) quantas vezes a densidade do ar é maior que a do hélio.
- 3. Ao nível do mar, qual a massa de 1,0 L de ar a 27 °C? Para os cálculos, utilize a massa molecular aparente do ar, obtida no exercício 1.
- 4. Em balonismo, o ar é aquecido com queimadores de gás propano. Sabe-se que isso torna o ar menos denso e provoca a subida do balão. Admita que um aquecimento ao nível do mar elevou a temperatura do ar para 127 ºC e que a pressão manteve-se praticamente igual a 1,0 atm. Nessas condições:
- a) determine a densidade do ar dentro do balão.
- b) utilize o resultado do exercício 3 e compare as densidades do ar a 27 °C e a 127 °C.

(Dada a massa molar aparente do ar = 28,8 g/mol).

- 5. A densidade absoluta do gás oxigênio (O₂) a 27 °C e 3 atm de pressão é: (Dado: O = 16 u). a) 16 g/L b) 32 g/L c) 3,9 g/L d) 4,5 g/L e) 1,0 g/L

- 6. A densidade de um gás desconhecido, a 98 °C e 740 mmHg, é de 2,50 g/L. A massa molecular do gás é:
- a) 32,00.
- b) 78,10.
- c) 21,30.
- d) 30,00.
- e) 57,00.

7. A densidade de um gás é 1,96 g/L medida nas CNTP. A massa molar desse gás é, em g/mol:

- a) 43,90.
- b) 47,89.
- c) 49,92.
- d) 51,32.
- e) 53,22.

8. A densidade de um gás biatômico (X2) é igual a 1,25 g/L nas CNTP. Qual a massa de um mol de átomos do elemento X?

- a) 14 g.
- b) 28 g.
- c) 12,5 g.
- d) 22,4 g.
- e) 6.0×10^{23} q.

9. A densidade do gás carbônico em relação ao gás metano é igual a: (Dados: H = 1 u; C = 12 u; O = 16 u).

- a) 44
- b) 16
- c) 2,75
- d) 0,25
- e) 5,46

10. A densidade relativa do gás oxigênio (O₂) em relação ao ar atmosférico é: (Dado: O = 16 u).

- a) 16
- b) 2
- c) 0.5
- d) 1,1
- e) 1,43

11. Considere 4 bexigas (balões e bolas de aniversários) cheia dos gases:

- Balão I: hidrogênio (H₂).
- Balão II: oxigênio (O₂).
- Balão III: amônia (NH₃).
- Balão IV: metano (CH₄).

Soltando-se essas bexigas, quais delas irão subir? (Dados: H = 1 g/mol; C = 12 g/mol; O = 16 g/mol; N = 14 g/mol).

- a) todas.
- b) I e II, somente.
- c) II e IV, somente.
- d) II, somente.
- e) I, III e IV, somente.

Gabarito: 1. 28,8 u; 2. a) 0,14, b) 7,2; 3. 1,17 g; 4. a) 0,88 g/L, b) Densidade a 127 °C é menor que a 27 °C; 5. C; 6. B; 7. A; 8. A; 9. C; 10. D; 11. F.